System for Processing and Analyzing
WIM and AVC Data

Prepared by

Matt Folwell
Jerry Stephens

Department of Civil Engineering
Montana State University
Bozeman, Montana 59715

Prepared for

State of Montana

Department of Transportation

Research, Development, and Technology Transfer Program
in cooperation with the

U.S. Department of Transportation

Federal Highway Administration

March 1997

TECHNICAL REPORT STANDARD PAGE

1. Report No. 2. Government Accession No.
FHWA/MT-97/8117-3

3. Recipient's Catalog No.

4. Title and Subtitle
System for Processing and Analyzing WIM and AVC Data

5. Report Date
March 1997

6. Performing Organization Code

7. Author(s)
Folwell, M., Stephens, J.E.

8. Performing Organization Report No.

9. Performing Organization Name and Address
Department of Civil Engineering, Montana State University
Bozeman, Montana 59717

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
8117

12. Sponsoring Agency Name and Address
Montana Department of Transportation
2701 Prospect Avenue

Helena, Montana 59620-1001

13. Type of Report and Period Covered
Final, January 1996 to March 1997

14. Sponsoring Agency Code
5401

15. Supplementary Notes

Research performed in cooperation with the Montana Department of Transportation and the US Department of Transportation,

Federal Highway Administration.

16. Abstract

A computer program that processes Weigh-In-Motion (WIM) and Automatic Vehicle Classifier (AVC) data into a format usable by the
Montana Department of Transportation (MDT) was developed in this project. The program calculates average Equivalent Single Axle Load
(ESAL) factors by vehicle configuration, average vehicle weights by configuration, and indicators of WIM system performance for
WIM/AVC sites. This information is available both in a selected time window and annually. The program, written using the Microsoft

Access database, also identifies and describes the overweight vehicles found in the data.

17. Key Words 18. Distribution Statement
Montana No Restrictions. This document is available
Automatic vehicle classifier, AVC to the public through: NTIS

Computer program
Weigh-in-motion, WIM

Springfield, Virginia 22161

19. Security Classif. (of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

21. No. of Pages 22. Price
57

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

il

Disclaimer

The opinions, findings, and conclusions expressed in this publication are those of the
authors and not necessarily those of the Montana Department of Transportation or the Federal
Highway Administration.

Alternate Format Statement

MDT attempts to provide reasonable accommodations for any known disability that may
interfere with a person participating in any service, program, or activity of the department.
Alternative accessible formats of this document will be provided upon request. For further
information, call (406) 444-6269 or TTY (406) 444-7696.

iii

ABSTRACT

A computer program that processes Weigh-In-Motion (WIM) and Automatic Vehicle
Classifier (AVC) data into a format usable by the Montana Department of Transportation (MDT)
was developed in this project. The program calculates average Equivalent Single Axle Load
(ESAL) factors by vehicle configuration, average vehicle weights by configuration, and
indicators of WIM system performance for WIM/AVC sites. This information is available both
in a selected time window and annually. The program, written using the Microsoft Access

database, also identifies and describes the overweight vehicles found in the data.

v

TABLE OF CONTENTS

Section Page #
INTRODUCTION 1
WIM DATA COLLECTION AND ANALYSIS 2
DATA PROCESSING 6
DATA COMPARISON 24
CONCLUSION . 28
RECOMMENDATIONS 28
REFERENCES 29
Appendix A - Importing WIM data into the “WIM Data’ database A-1
Appendix B - Modification of ESAL Function B-1

Appendix C - Modification of Weight Function C-1

System for Processing and Analyzing WIM and AVC Data

INTRODUCTION
Background

The Montana Department of Transportation (MDT) has been collecting vehicle weight
and configuration data from Weigh-In-Motion (WIM) and Automatic Vehicle Classifier (AVC)
sites across the state. Four sites are presently active, with at least five additional sites scheduled
for completion in the next few years. This type of data collection system provides continual
information on the characteristics of the vehicles using Montana’s highways, which is valuable in
transportation planning, pavement design, and weight enforcement efforts. Use of WIM data
eliminates the temporal considerations involved with data from static weight sites, which
typically operate for only limited periods of time with respect to time of day and day of week.
Additionally, static weight sites may collect little information on overweight vehicles, as such
vehicles can avoid static scales by operating when these facilities are closed. A complicating
feature of data from WIM and AVC sites, however, is the shear volume of data collected. The
usefulness of this data can only be realized if programs are developed to process the information

into a manageable format.

Objective and Scope

In this project, a computer program was developed to process WIM data to calculate,
a) average vehicle weights by configuration, b) average ESAL factors by configuration, and
c) WIM system performance indicators. These values are calculated for a particular WIM site for
any block of data input by the user. The program is setup to accumulate data by month and year.
The program also identifies overweight vehicles and their characteristics.

Program development required background research of various aspects on the WIM
system performance and the raw data format. This background research included review of
existing WIM systems operating within other states and evaluation of the type of system
currently functioning in Montana. A system was then developed to read the raw WIM data,
screen the data for anomalous entries, and calculate the desired statistics. Screening was

performed through both manual observation of the raw data and review of other states screening

criteria for similar systems (1). This screening basically consisted of establishing physically
credible vehicle weights (e.g. maximum/minimum values) for each vehicle configuration.
Statistical processing of the WIM data was then conducted. Validation of analysis algorithms
included in the program was then performed, along with some simple comparisons of the data

collected by a typical WIM site with the data collected from a nearby static scale.

WIM DATA COLLECTION AND ANALYSIS
WIM Systems

There are several types of WIM systems available in the U.S., namely, piezoelectric
sensor systems (system presently used in Montana), bending plate systems, capacitance pad
systems, and pressure-cell systems. The most popular of these systems apparently are the
piezoelectric and bending plate systems. Installation of a WIM system consists of, a) placement
of the system during road construction, or b) removal of a short section/sections of pavement and
placement of the WIM system in the roadway, flush with the road surface.

The piezoelectric system uses piezoelectric sensors that generate an electric current under
the pressure of the axle forces of a passing vehicle. These changes in electric current are
converted to axle weights based on the sensor properties. The bending plate system employs a
metal plate that bends under the weight of the axles of a passing vehicle. The bending strains are
measured and converted by the principles of engineering mechanics to axle weights. The
bending plate system has an advantage over the piezoelectric system in that it has a larger surface
area from which a signal is produced, thus limiting more of the dynamic loading effects
associated with sorter measuring devices such as the piezoelectric system.

The WIM system under consideration for this project consists of two piezoelectric
sensors placed about an inductance loop in each lane of traffic, with lane travel validation sensors
located at the extreme sides of lane travel, as shown in Figure 1. The piezoelectric sensors
collect information on vehicle weight, speed, and axle spacings. The inductance loop collects
information of vehicle length. The piezoelectric sensors are installed below the pavement
surface and covered with epoxy resin flush with the surface of the pavement so as to reduce the

possibility of any dynamic impact of the tire on the surface of the resin generating dynamic

- Shoulder of pavement —
._-'/ Fog line / Center line

Lane Lane

Piezoelectric sensor

]

ll
E
(¢
<
-
o
—
53
o
=]
7]
o
=}
@
o
=

:llllIIIIIIIIIIIIIIIIIlIlllIlIlIlIl|. =IIIIIIIlIllIllIIIIIIllllllllIIlllll.

Inductance loop

/

alfnpinInInInIInInn
e LR RRRNR RN RRRNTE]]

"

/ TApprox. 1.80 M (5.91 ft.)

Epoxy resin base in which
piezoelectric sensors are set.

Direction of Direction of
travel I travel

Figure 1.
Two lane setup of piezoelectric WIM system site.

loading within the sensors. The inductance loops are placed within the pavement and produce a
magnetic field above the area of the sensor. The loops produce information when this magnetic
field is disturbed by the passing vehicle. The validation sensor simply indicates if the vehicle
traveling over the sensors is in a position such that proper data collection is possible

(i.e. in a lane rather than straddling a lane). The piezoelectric sensors in combination with the
inductance loop record information of individual axle weight, axle spacings, vehicle length, and
vehicle speed. This information is immediately sent to an on-site computer which processes and
stores information on each individual vehicle, identified as FHWA Class 4 or higher (setup of
identification may be changed), that passes over the WIM site.

Information that is gathered, processed, and stored within the on-site computer for the
WIM system under consideration includes: a) date and time of incident, b) lane of travel and
validation/violation of that incident, c) classification and sub-classification of the particular
vehicle, d) speed, e) length, f) total weight of the vehicle, and g) individual axle weights and
spacings for the vehicle. All recordings are in English units of feet and pounds.

The primary discriminators of the data collected at the WIM site are the vehicle class as
set by and sub-class categories as set by ECM Inc. Classification is performed according to
silhouettes and tolerances input by the user (in this case, MDT). Information on individual axle
weights and spacings and total vehicle length and gross weight are all used in classifying a
vehicle. Vehicle class usually denotes whether the vehicle consists of a single unit, a truck and
trailer, or a tractor-trailer combination with a particular number of axles (first set of characters in
class designation). The sub-classification denotes different axle configurations of the particular
classes recognized by the system (second set of characters in the class designation). A
description of the vehicle classification presently used by MDT is presented in Table 1.

The WIM system under consideration is manufactured in France and distributed by ECM
Inc. (Manor, Texas) (2). The system is designed to be self-calibrating by the on site computer,
and it is expected to function fully under all types of weather conditions, with the exception of
extreme cold temperatures. The self-calibration of the system occurs to correct signal drift that
may occur 6ver time. The calibration routine adjusts the system to produce the expected results
for a vehicle sub-class that exhibits common characteristics of weight and length for all vehicles

of the same sub-class which pass over the system. The most current systems functioning in

4

Table 1. ECM classification - sub-classification format.

Class-Subclass Description of vehicle

4-10 2 axle single unit- passenger bus

4-17 3 axle single unit- passenger bus

5-11 2 axle single unit- 3.05 to 4.57m (10 to 15ft) distance between steer and drive axle

5-12 2 axle single unit- 4.57 to 6.10m (15 to 20ft) distance between steer and drive axle

5-18 2 axle truck and single axle full trailer- two axle truck with single axle trailer

5-26 2 axle truck with tandem axle full trailer- tandem axle trailer

5-27 2 axle truck with 2 axle full trailer- 3.05 to 4.57m (10 to 15ft) distance between
steer and drive axle on truck

5-28 2 axle truck with 2 axle full trailer- 4.57 to 6.10m (15 to 20ft) distance between
steer and drive axle on truck

5-34 2 axle truck with tridem axle full trailer- 3.05 to 4.57m (10 to 15ft) distance
between steer and drive axle on truck

5-35 2 axle truck with 3 axle full trailer- 4.57 to 6.10m (15 to 20ft) distance between
steer and drive axle on truck

6-17 3 axle single unit- truck

7-27 4 axle single unit- truck

7-36 5 axle single unit- truck

8-20 3 axle tractor semi- trailer- 2 axle tractor with single axle trailer

8-30 4 axle tractor semi- trailer- 3 axle tractor with single axle trailer

8-31 4 axle tractor semi- trailer- 2 axle tractor with tandem axle trailer

9-37 5 axle tractor semi- trailer- 3 axle tractor with tandem axle trailer

9-38 5 axle tractor semi- trailer- 3 axle tractor with split tandem axle trailer

9-39 5 axle tractor semi- trailer- 2 axle tractor with tridem axle trailer

10 - 42 6 axle tractor semi- trailer- 3 axle tractor with tridem axle trailer

10 - 45 7 axle tractor semi- trailer- 3 axle tractor with quadem axle trailer

11-40 5 axle tractor semi- trailer and full trailer- 2 axle tractor with single axle semi-
trailer and 2 axle full trailer

12-43 6 axle tractor semi-trailer and full trailer- 3 axle tractor with single axle semi-
trailer and 2 axle full trailer

13 - 46 7 axle tractor semi-trailer and full trailer- 3 axle tractor with single axle semi-
trailer and full trailer with single lead axle and tandem axle

13 -48 9 axle tractor semi-trailer and full trailer- 3 axle tractor with tandem axle semi-
trailer and full trailer with two tandem axle sets

Montana use the steering axle of class 9 vehicles to perform this operation. Data is collected
from the on site computer by means of a telecommunication link to MDT in Helena, where it is

stored in the same ASCII text format that is created at the data collection site.

Uses of WIM Data

WIM systems provide information that has several uses, ranging from weight
enforcement to determining pavement design parameters. WIM sites provide information on the
operation of overweight trucks, which can be used to schedule enforcement activities.
Information obtained from the WIM site is also used to determine pavement design parameters
through data processing procedures that determine equivalent single axle load (ESAL) factors for
that site. These parameters can then be used for future road construction and reconstruction that

is site and state specific, alleviating the use of statewide average ESAL factors for road design.

DATA PROCESSING
Design Solution

Several different approaches to processing the raw WIM data (all with the same desired
end results) were considered. These approaches were evaluated with respect to the nature of the
user interface, the ease of programming, and the ability to process tens of thousands of records.
Consideration was initially given to spreadsheet programs. These programs, however, were
found to be limited by the amount of storage space available within the programs, themselves.
Programing languages such as FORTRAN, Basic, and C++ were also considered. While these
programs were able to provide all the necessary elements of interest for a solution of the
problem, quality graphics were believed to be cumbersome to generate. Database programs were
examined and found to provide the most efficient and attractive solution for transforming the raw
WIM data into usable information.

Microsoft ACCESS(3) was the database program selected as an economical and feasibly
practical program to implement. ACCESS (available with Microsoft Works) is a database
program that is Windows based; therefore, most command actions are achieved by a mouse click.

Creating and building a database is similar to a puzzle; there are several pieces that integrate

together to form a solution. This database solution provides a more practical tool for the
user/program designer who lacks programming knowledge. This solution also shortcuts the

typically lengthy code functions involved with a language-based solution.

Description of ACCESS

ACCESS is designed for a user that does not want to become involved in a complex
database system. It is set up with object type tabs in a database presentation form for quick
selection of desired information. These object type tabs are presented in the following order:
Tables, Queries, Forms, Reports, Macros, Modules. Tables are basic spreadsheets that contain
information in recordsets (in this case, records for each individual vehicle passage) which are
broken down into fields. These spreadsheets may be manipulated just as any normal spreadsheet
program by clicking on tool bar commands to achieve desired functions, but small mathematical
commands cannot be programmed within the spreadsheet. Queries are similar to sub-tables, and
generally contain information that is sorted by desired characteristics from tables of interest.
Forms provide the user with both information and icons that a user may click on for execution of
a desired function. This function may consist of performing a calculation, transferring data, or
various other operations. Reports display information, received from a table or query, in a
presentation form. Macros provide a programer/user with a quick way to execute a desired
function without having to write a function to perform the same operation. Modules store all the
functions that a programmer has written. These programs are written in Visual Basic, which is a
quick, non-complex programming language with mass capabilities.

Once users become familiar with the ACCESS database, they will want to do more with
it. Users will become interested in the availability of more information to answer yet further
questions. A well designed database can handle thousands of records with little strain and quick

results.

WIM ACCESS Database

In developing an ACCESS based program to process WIM data, consideration was given

to the ease with which the user can adjust the existing database and expand the current

capabilities of the database. In the interest of simplifying the program function, two databases
were created, one to conduct initial handling of the raw WIM data which produces information
relating to the current data being processed and stored in the database, and one to handle annual
WIM data information which processes and stores data progressively over the current year.
Following this approach, some clutter was eliminated in the overall bulk of material within the
individual databases. The basic function of the program is shown in Figures 2a and 2b, which
depict the flow of the data through the elements of the database. The Weight function produces
statistical information for all the truck sub-classes currently in the database. The ESAL function
produces ESAL values for each individual truck record that is currently in the database, and
calculates average ESAL values. The System Performance function calculates information
regarding the calibration of the WIM system, which may reflect on the validity of the data
provided by the system.

Data is initially obtained from the WIM system collection site in a compressed format and
converted to ASCII text form by the host computer after downloading. The data is imported into
the database in ASCII text form. The steps involved for the importation of external data to the
‘WIM Data’ database are outlined in Appendix A. To use ACCESS, the user must delete the
header information that is also retrieved with the raw WIM data from the site. To accomplish
this deletion, the user may wish to use a word processing program that has the capability to re-
save the edited data in the same ASCII text file format. At this point, the user should make
themselves aware of a current existence of a “wim data” table denoting that this table already
exists and has previous WIM data information stored within it. The user is free to elect to add
more data to the existing “wim data” table, or to remove the existing “wim data” table from the
Table section using the Cut command on the main tool bar. This new data will then be imported
to a table named “wim data” utilizing a data importation method built into the database, and
importation field specifications set by the programmer. It is imperative that this table be named
“wim data” as queries and procedures call information from this specific table. This step is a
crucial part of the data manipulation, as the user must be familiar with the format of the data
being impdrted and the individual fields that should appear when this step is executed. Once the
importation is complete, the user is free to observe and manipulate the data now stored in the

“wim data” table through tool bar commands.

| Wim Data Databasef
I

Import External Data

~ Table

' wim data |

Table

Ll?ff.igz_?ﬂ_@_eie}s \

Query Query Query Query
ClassXLOW ~ ClassXLEGAL | | Class X LEGAL + HIGH | | Class X HIGH
| | |

Execut? Forms
| I
Form ‘ Form Form
Equipment Performangg_? i ESAL Calculation%

Run Procedure

Table

r 1

Class X Performance|

Report

Class X Performancei

Eﬂg{ght Info.
_I___

Run Procedure —
Table
[—ﬁ
 Class X Weight

Report

Class X Weight

Run Procedure

Table

| Class X ESAL

Report

Class X ESAL

Information to ‘Annual Information’ database

Figure 2a.

Flow of data and occurrence of events in the ‘WIM Data’ database.

Annual Information Database
|

| I 1

Table _ Table _ Table
'System Performance’ Class X AE, Class X AW
Tabl I
r 2 e} Execute Forms
Year |
I B
. Form | . Form -
f_System Performance _Annual Weight/ESAL Information
I
Table ‘ Tables
f
System Performance Class X Annual Information
[
| Class X Annual Graph
~ Report |
Annual Performance | Report
 Class X Annual Information|

Figure 2b.
Flow of data and occurrence of events in the ‘Annual Information’ database.

10

The Forms section contains the toggles that initiate the execution of different procedures
and processes. There are five forms within the “WIM Data’ database; “Weight Information”,
“ESAL Calculation”, “System Performance”, ”Delete ESAL Tables”, and “User Information”.
Within the ‘Annual Information’ database two forms exist; “Annual Weight / ESAL
Information” and “System Performance”.

The “Weight Information” form within the ‘Annual Information’ database provides the
user with toggles that provide basic statistical weight information for a specific time period, and
annually through the execution of a procedure in the Modules section. The user should be aware
that information is sent to both the “WIM Data’ database, and the ‘Annual Information’ database
upon the execution of the toggle.

The “ESAL Calculation” toggles within the ‘WIM Data’ database initiates procedures
within the Modules section of the database. The user must click these toggles to later produce
desired information. Upon clicking the toggles, the user sends desired information to tables
within the “Wim Data’ database and the ‘Annual Information’ database. Therefore, the user
should be aware that the availability of future information which is stored within the ‘ Annual
Information database’ depends upon the execution of the ESAL toggles.

The “System Performance” form within the ‘Wim Data’ database initiates a procedure in
the Modules section that again sends information to tables in the ‘WIM Data’ database, and the
‘Annual Information’ database. The user should be aware of the significance of habitually
executing this toggle over time so that a representable amount of data becomes available within
the ‘Annual Information’ database. Clicking this toggle provides the user with an idea of how
the system is currently performing by showing axle weight information of class 9-37 truck, of
which typical axle weights are commonly known.

The “Delete ESAL Tables” togglés within the ‘WIM Data’ database initiates a delete
command coded into the design of the form that removes data from ESAL storage tables
established for data manipulation. A function has been written for each of these toggles that calls
and executes a delete query. The function of this particular type of query is to delete recordsets

contained within a table or query, without deleting the structure of the table or query. These

11

delete queries allow the user the option to delete previously determined ESAL information in the
‘WIM Data’ database stored in tables (which is used only for storage and calculational purposes
in the ESAL calculation procedure) before processing a new or expanded “wim data” table.
These toggles should be executed before or after a new “wim data” table has been created and
before any “ESAL Calculation” toggles are executed. If these toggles are not performed, then
previous ESAL information will exist within the database and execution of the “ESAL
Calculation” toggles will add data to the existing information.

The “User Information” form in the “WIM Data’ database provides the user with a place
to store information about activities performed with the database, and any modification made to
the database. This information enables future users to retrace other users steps or actions. This
information is stored continuously within the “User Information” table and is accessible either
through the form or the table (and it is available for modification).

The “Annual Weight / ESAL Information” form within the ‘Annual Information’
database contains toggles that initiate functions which utilize the information sent to the ‘Annual
Information’ database by the execution of ESAL and weight toggles in the ‘Wim Data’ database.

The “System Performance” form in the ‘Annual Information’ database initiates a function
that calls data from tables which received data from the execution of the “System Performance”
toggle in the ‘Wim Data’ database.

The Reports section contains the output information prepared by the toggle clicks
executed within the Forms section. Three types of reports are available within the ‘“WIM Data’
database, which represent the individual vehicle classes and system performance. These three
types of reports are shown in Figures 3a, 3b, 3c. Two types of reports are available in the
‘Annual Information’ database which are shown in Figures 3d and 3e. All ESAL and weight
statistics are available at this point for the current “wim data” table time window. The
information in the ESAL reports comes from the ESAL Ave. Tables for each truck class. The
information in the weight reports come from both weight tables and truck class queries. The
information within the System Performance report comes from a System Performance Table.
When several recordsets are present in the storage tables from where the Reports pull their

information, a report will be generated for each individual recordset. The Macros section

12

Class 9 We('qht Information - Townsend ’Site

TimeWindow 1/ 4 /96 TO 9 /16/96
Class 9 Population: 10400 (16.11% of current wim data population)

Average Operating Weight (kips): 55.50

Average Low Weight (kips): 22.26
% QOverweight; 11.38
Average Overweight (kips): 88.45

Ave. Leqal Weight Sub-Class 37 (kips) 54.79

Count of legal trucks: 8240
Countofleqal trucks 240 [
High Weight Sub-Class 37 (kips): 117.60 C S Cor
Count of overweight trucks: 1120
Ave. Legal Weight Sub-Class 38 (kips) 58.89
) 17
Count of legal trucks 12 EJ—H ! _]
High Weight Sub-Ciass 38 (xips): iG7.00 — = i
Count of overweight trucks: 64
Ave. Leqgal Weight Sub-Class 39 (kips) -0.00
Count of leqal trucks: Q
High Weight Sub-Class 39(kips): 0.00 o U el
Count of overweight trucks: o]
Monday, January 27, 1997 Page 1 of 4
Figure 3a.

Report of Class 9 Weight Information.

13

Class 9 Weight Information - Townsend Site

TimeWindow 1 /4 /96 TO 9 /16/96
Class 9 Population: 10400 (16.11% of current wim data population)

Class 9 Weight vs Time Correlation

120

100 3 - . L
[]

weight (kips)

time (0=12:00 AM 12=12:00 PM)

Monday,_January 27, 1997 Page 2 of 4

Figure 3a.
Report of Class 9 Weight Information.

14

Class 9 ESAL Statistical Information - Townsend Site

Time Window 1 / 4 / 9{5 TO 9 /16/96 Design Parameters Pt:2.40 SN: 3.30
Class 9 Population: 9952 (15.42% of current wim data population)
Sub-Class 37 — 1] l
Population: 8240 T oo
Average Minimum Maximum
Steer Axle Esal: . 0.06840 0.00040 0.87010
Drive Axie ESAL: 0.573380 0.00540 19.65600
Trailer Axies ESAL: 0.47100 0.00020 7.27330
Total ESAL: 1.11330 0.01630 19.66250
1
Sub-C!ass 38 [__/’T‘] l
Population: 1712 CO—TC0r C o7
Average Minimum Maximum
Steer Axle ESAL: 0.06100 0.00040 0.44890
Drive Axle ESAL: 0.58300 0.00650 4.60@80
Lead Trailer Axle ESAL: 0.67560 0.00010 5.98490
Second Trailer Axle 23AL: 0.64890 0.00010 5.03730
Total ESAL 1.96850 0.02020 12.66530
Sub-Class 39 E/_ﬂ
Population: 0 o ’ or [exwaS)
Average Minimum Maximum
Steer Axle ESAL: 0.00000 0.00000 0.00000
Drive Axle ESAL: 0.00000 0.00000 0.00000
Trailer Axles ESAL: 0.00000 0.00000 0.00000
Total ESAL: 0.00000 0.00000 0.00000

Page 1 of 1
Monday, January 27, 1997

Figure 3b.
Report of Class 9 ESAL Information.

15

System Performance - Townsend Site

TimeWindow: 1 / 4 /96 TO 9 /16/96
Class 9 Population 8528

Class 9-37 Axle Weight Information

(13.21% of current wim data population)

Steer Axle Average (kips): 9.77
Steer Axle Standard Deviation (kips): 1.67

Drive Axles Average (kips): 23.71
Drive Axles Standard Deviation (kips): 9.63

Trailer Axles Average (Kips): 20.23
Traiier Axles Standard Deviation (Kips): 11.34
Drive + Trailer Axles Average (kips): 43.94
Drive + Trailer Axles Standard Deviation (kips): 20.52

Percentage of unclassified trucks
Percent of trucks in class 14: 26.25%
Percent of trucks in class 99: 1.65%
Monday, January 27, 1997 Page 10of 1

Figure 3c.
Report of System Performance.

16

|__CLass 9 Annual Information - Townsend Site
1997

January | February March April May June

l Average monthly weight | 58.62500 | 0.00000 0.00000 | 0.00000 | 0.00000 | 0.00000

| Trucks in weight count 64 0 0 0 0 0

l Average monthly ESAL | 1.44770 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

| Trucks in ESAL count 64] 0 0 0 0

July August |September| October | November | December

[Average monthly weight | 0.00000 | 0.00000 | 55.48810 | 0.00000 | 0.00000 | 0.00000

| Trucks in weight count 0 0 19840 0 0 0

' Average monthly ESAL | 0.00000 | 0.00000 1.25980 | 0.00000 0.00000 | 0.00000

| Trucks in ESAL count 0 0 19840 0 0 0

(All weights in kips)

| YTDweight (kips) | 55.4982

[YTD Trucks in Weight count| 19904

I YTD ESAL | 12604

| YTD Trucks in ESAL count | 19904

Class 9 Annual Graph

&

OAnnualSWeight
M AnnualSESAL

we ght (kips)
ESALX 10
«w
(=)
1

[S]
Q
"
|

-
o
"
1

o
}
1
4

1 2 3 4 5 6 7 8 9 10 1 12

month (January =1)

Monday, January 27, 1997 Page 1 of 2

. Figure 3d.
Report of Class 9 Annual Information.

17

Annual Performance - Townsend Site

1997

Class 9 Steer Axle Information

January | February | March April May June
| Steer Axle Average 10.89 0.00 0.00 0.00 0.00 0.00
[Steer Axle Std. Deviation 10.66 -0.00 0.00 0.00 0.00 0.00 4
July August |September|{ October | November | December
| Steer Axle Average 0.00 0.00 9.76 0.00 0.00 0.00
[Steer Axle Std. Deviation | 0.00 0.00 1.67 0.00 0.00 0.00
Percentage of Unclassified Trucks
January | February | March April May June
f Class 14 19.44% 0.00% 0.00% 0.00% 0.00% 0.00%
[Class 99 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
July August |September| October | November | December
| Class 14 0.00% 0.00% | 26.27% | 0.00% 0.00% 0.00%
i Class 99 0.00% 0.00% 1.66% 0.00% 0.00% 0.00%
Monday, January 27, 1997 Page 1of 1
Figure 3e.
Report of Annual Performance.

18

contains information pertaining to the report structures and form functions that initiate the
opening of tables so that design and report parameters may be changed. The user does not need
to interface with any of the macros.

The Modules contain the functions within procedures that are called by the toggle
executions within the Forms section. These functions perform calculations such as determining
ESALs for axle configurations, statistical ESAL information, statistical weight information, and
system performance information. When these functions are executed within the “WIM Data’
database, they send information to both tables in the “WIM Data’ and ‘Annual Information’
databases for storage in tables for later access in Reports. Upon executing the Form toggles
several times, several recordsets will appear in the information storage tables; current recordsets

are not overwritten.

Weight Calculations
Within the individual vehicle classifications and sub-classifications, the recordsets are

sorted into various weight categories using the weight field of the recordsets. Simple operations
are then performed on this data to return statistical information to the truck class Weight Tables
in both the ‘Wim Data’ database and the ‘Annual Information’ database. The function for this
procedure is found in Appendix B. Utilizing the class and sub-class determinations made by the
WIM system, itself, the ACCESS program proceeds to sort the data within each configuration
category by weight categories. This breakdown first occurs into vehicle classes, and then into
sub-classes. These sub-classes are then broken into weight categories of “HIGH” weight which
denotes overweight trucks, a “LOW” weight category which denotes suspiciously low truck
weights, a “LEGAL” weight category which includes all trucks seen as operating legally, and a
“LEGAL + HIGH” weight query which is used for the calculation of ESAL values. The weight
categories are shown in Table 2 and are determined as follows:
1) The “HIGH” weight category is established using the maximum legal unpermitted gross
vehicle weight for each vehicle. These maximum weights are established by the bridge
formula or determined by the sum of the individual permissible axle loads, of which the

lower value controls. The allowable axle weights for the axle groups used in these

19

Table 2. Weights used in query weight divisions.

Class' # of Axles LOW truck weight” HIGH truck weight’ Bridge Formula®

4-10 2 31.12 KN (7 Kips) 177.93 KN (40 kips) W = 500[L(2)/(2-1)+12(2)+36]
4-17 3 31.12 KN (7 kips) 240.20 KN (54 kips) W = 500[L(3)/(3-1)+12(3)+36]
511 2 31.12 KN (7 kips) 177.93 KN (40 kips) W = 500[L(2)/(2-1)+12(2)+36]
5.12 2 31.12 KN (7 kips) 177.93 KN (40 kips) W = 500[L(2)/(2-1)+12(2)+36]
518 3 44.48 KN (10 kips) 240.20 KN (54 Kips) W = 500[L(3)/(3-1)+12(3)+36]
5_26 4 62.28 KN (14 kips) 320.27 KN (72 Kips) W = 500[L(4)/(4-1)+12(4)+36]
5-27 4 62.28 KN (14 kips) 355.86 KN (80 kips) W =500[L(4)/(4-1)+12(4)+36]
528 7 62.28 KN (14 Kips) 355.86 KN (80 kips) W = 500[L(4)/(4-1)+12(4)+36]
534 5 88.06 KN (20 kips) | 366.98 KN (82.5 kips) W = 500[L(5)/(5-1)+12(5)+36]
5-35 5 88.96 KN (20 kips) 366.98 KN (82.5 kips) W = 500[L(5)/(5-1)+12(5)+36]
6-17 3 31.12 KN (7 kips) 240.20 KN (54 Kips) W = 500[L(3)/(3-1)+12(3)+36]
7-27 4 62.28 KN (14 kips) | 278.01 KN (62.5 Kips) W = 500[L(4)/(4-1)+12(4)+36]
7 -36 5 88.96 KN (20 kips) 313.60 KN (70.5 kips) W = 500[L(5)/(5-1)+12(5)+36]
8-20 3 88.96 KN (20 kips) 266.89 KN (60 kips) W = 500[L(3)/(3-1)+12(3)+36]
§-30 4 97.86 KN (22 kips) 329.17 KN (74 Kips) W = 500[L(4)/(4-1)+12(4)+36]
8-31 4 97.86 KN (22 kips) 329.17 KN (74 kips) W = 500[L(4)/(4-1)+12(4)+36]
9-37 5 120.10 KN (27 kips) 391.44 KN (38 Kips) W = 500[L(5)/(5-1)+12(5)+36]
9-38 5 120.10 KN (27 kips) 418.13 KN (94 kips) W = 500[L(5)/(5-1)+12(5)+36]
9-39 5 120.10 KN (27 kips) | 366.98 KN (82.5 kips) W = 500[L(5)/(5-1)+12(5)+36]
10 - 42 6 133.45 KN (30 kips) 429.25 KN (96.5 kips) W = 500[L(6)/(6-1)+12(6)+36]
10 - 45 7 146.79 KN (33 kips) 464.84 KN (104.5 kips) W = 500[L(7)/(7-1)+12(7)+36]
11- 40 5 142.34 KN (32 Kips) | 444.82 KN (100 kips) W = 500[L(5)/(5-1)+12(5)+36]
12 - 43 6 155.69 KN (35 kips) 507.10 KN (114 kips) W = 500[L(6)/(6-1)+12(6)+36]
13 - 46 7 169.03 KN (38 kips) 569.37 KN (128 kips) W = 500[L(7)/(7-1)+12(7)+36]
13 -48 9 195.72 KN (44 kips) 693.92 KN (156 kips) W = 500[L(9)/(9-1)+12(9)+36]

'ECM classification - sub-classification format.

> Weights determined by reasonable estimation and information obtained from the Florida
Department of Transportation (1).

* Weights determined from summation of allowable loads on individual axle groups:
Single axle = 88.96 kN (20 kips)
Tandem axle set = 151.24 kN (34 kips)
Tridem axle set = 189.05 kN (42.5 kips)
Quadem axle set =224.64 N (50.5 kips)

* Federal Bridge Formula,

W = 500[LN/(N-1)+12N+36]
where: W = (units of Ibs)

L = overall length of entire vehicle.
N = number of axles of entire vehicle.

20

calculations are:

Single axle = 88.96 kN (20,000 lbs)
Tandem = 151.24 kN (34,000 1bs)
Tridem = 189.05 kN (42,500 lbs)
Quadem = 224.64 kN (50,500 Ibs)
Bridge Formula weights were calculated as:

W =500[LN/(N-1) + 12N + 36]
where: W = maximum weight (in 1bs)
L = total length of truck (in feet)
N =# of axles of entire truck

Note that these calculations were done using only the outside-to-outside length and total
number of axles.

2) The “LOW” weight category includes those vehicles that have a questionably low total weight
recorded in the imported WIM data. The upper limit on this category must be determined as
a reasonable minimum weight for each vehicle configuration. These limits can be estimated
through reasonable estimation by the programmer. The values initially set in ;the program
were reported in a study performed by the Florida Department of Transportation (1).

3) The “LEGAL” query category then uses the criteria of both the “LOW” and “HIGH”
categories to collect the trucks that are operating legally.

4) The "LEGAL + HIGH” category includes all trucks that are operating at a weight above the
minimum weight established in the “LOW” category.

The user at this point has the opportunity to adjust the lower bound weight limit
established for each truck sub-classification, and modify the upper bounds, if so desired. The
user also has the option to manipulate the queries and the data stored within them, just as with

the tables, with tool bar options.

ESAL Calculations

Within the individual vehicle sub-classes, information is extracted from the “LEGAL +
HIGH” weight category queries, and ESAL values are calculated for each vehicle. Statistical
information on the ESAL values for the sample are determined. The function for this procedure

is found in Appendix C. This information is sent to tables in both the ‘WIM Data’ database and

21

the ‘Annual Information’ database. The ESAL calculation for the individual axle loads is
performed in accordance with the “AASHTO Interim Guide for Design of Pavement
Structures"(4). The following Equations are coded into the functions to perform the ESAL

operations:

G- log(4.2—pt)
‘' (4.2-1.5)

G, = the logarithmic function of the loss in serviceability to the potential loss taken at a
point where p, (serviceability at end of time t) = 1.5 at time t, which the user can
adjust in the ESAL procedures.

p = function of design and load variables that represents the expected number of load

applications in reference to a serviceability index of 1.5.

X

" 0.081(L,+L,)*®
(SN"' 1)5.19(L2)3.23

, 0.081(18+1)*%

B,.=0.4
(SN+1)5.19(1)3.23

18

By1s = function of design and load variables that influence the shape of the p vs. W serviceability
curve.

L, = load on single, tandem, or tridem axle set.

L, = axle code (1 = single axle, 2 = tandem axle set, 3 = tridem axle set, 4 = quadem axle set).

SN = structural number design parameter.

The inverse logarithmic ESAL function for a single axle is:

W’ Gt Gt
=~=4.790g(18+1)-4.79%l0g(L +1)+—-—
ths x 18

22

W, = axle load at end of time t.
L, = axle load.

The inverse logarithmic ESAL function for a tandem axle set is:

W, G_G,
7/:f.=4.791<>g(18+1)-4.7910g(1:x+2)+4.33(log2)+—-—

lig x 18

The inverse logarithmic ESAL function for a tridem axle set is:

7, G, G,
7‘=4.7910g(18+l)—4.79log(Lx+3)+4.33(log3) o m—

hg x 18

The inverse logarithmic ESAL function for a quadem axle set is:

. G, G,
z =4.7910g(18+1)—4.79log(Lx+4) +4.33(log4) +—-—

I x 18

System Performance

The “System Performance” function within the “‘WIM Data’ database receives information
from the “Class 9 - 37" query upon which the statistical weight information for the individual axle
groups, such as the average group weight and standard deviation, is determined. This information
is then stored in the “System Performance” table in the “WIM Data’ database; it is also sent to
the “System Performance” table in the ‘Annual Information’ database for further processing. The
“System Performance” function in the “‘WIM Data’ database also calls information from the “wim
data” table so that a population percentage of vehicles classified as class 14 (recognizable vehicle,
but not able to classify) and class 99 (unrecognizable record) can be determined. This information

is stored agéu'n in both the “WIM Data’ database and the ‘Annual Information’ database.

23

The information provided within the two databases indicate current and long term trends
of weight information of class 9-37 trucks, reflecting the performance of the weight recordings of
the WIM system. Class 9-37 trucks were chosen for this procedure, due to the uniformity of
weights that are characteristically found in class 9-37 trucks. The most common of these weights
is the weight of the steer axle, which typically operate in the region of 40.03 to 53.38 kN (9,000
to 12,000 Ibs). Significant deviations in actual average steer axle weights from this range may
indicate a malfunction of the WIM equipment. Note, however, that system self calibration is
apparently accomplished using the steer axle weights for this vehicle, which would effectively
eliminate its usefulness as an independent check on system performance.

Also, the information provided within the two databases show current and long term
trends of vehicle misclassification of the WIM system. A significant percentage of vehicles
falling into class 14 and class 99 may indicate equipment problems and/or the existence of a new

vehicle requiring that a new silhouette be added to the WIM classifier.

DATA COMPARISON

Two studies were performed on the output generated by the ‘WIM Data’ program:

1) the accuracy of the calculations performed by the program was verified using an

independent data processing routine, and

2) the accuracy of the weight data obtained at a typical WIM site was cursorily examined

with respect to the weight data obtained from static scales.

For these efforts, WIM and static weight information were collected by MDT from a
region where a static scale and a WIM site are within a reasonable distance of each other. This
data was collected on three different days during the months of June and September. Within
these data sets, the only significant populations that existed were for class 9-37 (5 axle tractor
semi-trailer) vehicles. Thus, the class 9-37 vehicles were selected to evaluate the performance of
the “WIM Data’ program and to examine the performance of the WIM system, itself.

To verify the calculations done by the “WIM Data’ program, average weight and ESAL
calculations were performed independently on identical data sets using the “WIM Data’ program

and a Microsoft Excel spreadsheet. Calculations were done for class 9-37 vehicle data from both

24

the WIM and static scale sites for coincident time periods. Parameters calculated from the data
include the individual axle mean weights and standard deviations, vehicle gross weights and
standard deviations, and average ESALS.

The results from the spreadsheet and database calculations are compared in Table 3. All
results are identical to at least 3 significant figures, which indicates that the analysis routines in
the “WIM Data’ database program are functioning correctly.

Statistical comparisons of the data populations reported by the WIM and static weight
systems for the same time periods were then performed to examine the accuracy of the WIM
system at this site. The results of these analyses are shown in Table 4. In performing this
comparison, the WIM data was screened to remove vehicles that weighed above the maximum
weight found in the corresponding static weight population, as no trucks above this weight
(which is substantially above the legal limit of approximately 391.6 kN (88,000 Ibs)) were

recorded at the static scale.

Table 3. Comparison of output values for Excel spreadsheet and ‘WIM Data’ database.

ESAL Information
Steer axle Drive axles | Trailer axles | Sum of axles
Static Data | WIM Database 0.19410 0.57230 0.59680 1.36320
sample Excel Spreadsheet 0.19412 0.57231 0.59676 1.36319
WIM Data | WIM Database 0.13970 0.40670 0.37060 0.91700
sample Excel Spreadsheet | (.13968 0.40671 0.37058 0.91697
Weight Information
Steer axle Sum of axles
Static Data | WIM Database 11.135 61.49
sample Excel Spreadsheet 11.13478 61.48551
WIM Data | WIM Database 10.302 57.88
sample Excel Spreadsheet 10.30222 57.88278

25

Table 4. Statistical information of WIM and static weight data.

Population Group A (June 7)

Static Information

Population = 69 vehicles

Axle Steer Drive 1 Drive 2 Trailer 1 Trailer 2 Total
Mean Weight (kips) 11.135 12.910 12.959 12216 12.265 61.486
Standard Deviation 0.786 3.740 3.744 4.317 4.309 16.073
WIM Information Population = 180 vehicles
Axle Steer Drive 1 Drive 2 Trailer 1 Trailer 2 Total
Mean Weight (kips) 10.302 12.099 12.407 11.220 11.854 57.833
Standard Deviation 1.446 3.054 3.243 3.662 3.770 13.805
Statistical testing
z - test 5.808 1.608 1.079 1.697 0.697 1.667
f - test 0.859 0.846 0.888 0.816 0.900 0.864
Population Group B (June 16)
Static Information Population = 132 vehicles
Axle Steer Drive 1 Drive 2 Trailer 1 Trailer 2 Total
Mean Weight (kips) 11.427 13.387 13.436 13.051 13.105 64.406
Standard Deviation 0.618 2.972 2.968 3.891 3.891 13.357
WIM Information Population = 316 vehicles
Axle Steer Drive 1 Drive 2 Trailer 1 Trailer 2 Total
Mean Weight (kips) 10.314 11.989 12.625 11.284 12.221 58.433
Standard Deviation 1.176 2.549 2.662 2.988 3.056 11.165
Statistical testing
Z - test 13.054 4.727 2.716 4.674 2.328 4.520
f - test 0.828 0.799 0.879 0.732 0.845 0.817
Population Group C (September 11)
Static Information Population = 102 vehicles
Axle Steer Drive 1 Drive 2 Trailer 1 Trailer 2 Total
Mean Weight (kips) 11.153 12.801 12.852 12.359 12.407 61.572
Standard Deviation 0.818 3.495 3.493 4.547 4.543 16.054
WIM Information Population = 252 vehicles
Axle Steer Drive 1 Drive 2 Trailer 1 Trailer 2 Total
Mean Weight (kips) 10.185 12.283 12.255 11.400 11.932 58.057
Standard Deviation 1.251 3.195 3.184 3.656 3.784 13.982
Statistical testing
Z - test 8.596 1.294 1.493 1.896 0.933 1.934
f - test 0.847 0917 0.900 0.820 0.892 0.880

26

In the results presented in Table 4, the WIM weights appear to be consistently lower than
the static scale weights by approximately 10% (based on a calculated average steer axle weight
of 50.15 kN (11.27 kips) for the static scale data and 45.70 kN (10.27 kips) for the WIM system).
Statistical comparison tests were run on the WIM and static weight population samples, to
determine if there is a difference between the two populations. These tests were performed
assuming two independent samples with unequal standard deviations and a 5% significance
level. First, a z-test was performed on the sample means. The assumption of identical means
must be rejected if the z statistic exceeds a value of 1.96, which is the case for all steer axle
comparisons in Table 4. Thus, a statistically significant difference between the means of the
WIM and static steer axle weight populations exists. Secondly, a f-test was performed on the
variances of the two sample populations to determine if the standard deviations were similar. All
of the values calculated fall below the corresponding critical f-test value at a 5% significance
level. Thus, the standard deviations of the WIM and static weight data populations are
statistically similar.

The apparent reason for the difference between the axle weights reported by the WIM and
the static scale is the use of an incorrect calibration factor in the WIM system. The WIM system
being used, as described earlier, self-calibrates using the steer axle of a class 9-37 vehicle. This
self-calibration is intended to correct any signal drift by the system. To initially calibrate the
installed system, it is recommended in the installation manual for the WIM system that static
weights of steer axles from the intended calibration vehicle be obtained at the installation site
from a population of 100+ vehicles (2). The mean steer axle weight and standard deviation is
then computed from this static weight population, and input into the WIM system. The system
will then automatically calibrate itself on a continual basis using the user input mean weight
value. The static scale data would suggest that a steer axle weight of approximately 50.2 kN
(11.3 kips) may be appropriate at this site, although further investigation would be necessary to
establish a new calibration value. Presuming the WIM system is functioning properly, this
calibration value now appears to be set at approximately 47.2 kN (10.3 kips), consistent with the

value preset by the manufacturer.

27

CONCLUSIONS

WIM data will provide MDT with valuable information on vehicle weight statistics and
vehicle pavement demands at locations around the state. WIM sites collect data on a continual
basis, thus providing information to MDT that is not normally attainable with the existing data
collection system, namely, static weight stations.

A computer program was developed to process this WIM data into usable information for
the MDT. This computer program was built in a database program called Microsoft ACCESS,
which has the capabilities to handle tens of thousands of data records. This type of program was
chosen due to its ease of use to both a user and a programmer, and its excellent graphical
capabilities. ACCESS is a Windows based program, so most commands given by the user are
achieved by a mouse click. The program processes WIM data to obtain average weight and

ESAL information for the traffic stream at the WIM site.

RECOMMENDATIONS

The information desired from by the WIM database system will continue to evolve as
users of the information gain a feel for the different types of information that the WIM system
can provide. Information of interest not delivered under the present system, for example,
includes information of Annual Average Daily Traffic (AADT), where reports would be
produced to show traffic counts on a monthly and annual basis. Routines could also be
developed to directly support weight enforcement efforts. For example, reports showing the
correlation between weight enforcement activities and obsérved volumes of overweight vehicle
traffic can be made. It may also be useful to compare static weight station data and WIM data
to further validate WIM system performance and possibly develop correlation factors for use

with static weight station data in areas where WIM data is unavailable.

28

REFERENCES

1) Reel, Richard L. “Automated Editing of Traffic Data in Florida™ National Traffic Data
Acquisition Conference, Proceedings Volume 2, pp 143-164, September 18-22, 1994.

2) White, R. And Smith, S., ECM Inc., 10400 Block, Hwy 290E, P.O. Box 888, Manor, Texas,
78653.

3) Browne, A. and Balter, A., “Essential ACCESS 95" first edition, SAMS Publishing, 1995.

4) “AASHTO Interim Guide for Design of Pavement Structures 1972" Chapter 3 revised, 1981,
American Association of State Highway and Transportation Officials, pp 59 - 63, 1981.

29

Appendix A

Importing WIM Data into the ‘WIM Data’ Database

A-1

Method and Modification for Importation of Raw Data into ACCESS
Database

1.) Begin by going to file in the main menu of Access and select Get External Data, then select
Import in the sub-menu that appears.

2.) A file import form now appears so that a file from a folder may be selected for importation.
There are two file selection boxes in the lower left hand corner of the import form in which a
file name can be typed and file format type must be designated so that the data enters Access
in the proper format. Once a file has been selected either by highlighting the file or typing the
file name and Text Files has been selected in the file type, the Import icon can be clicked.

3.) A Text Import Wizard form now appears with a sample of the data that is being imported
into the database and format type. At this point the Advanced... icon is to be selected so that
field designations for the data being imported can be made. An Import Specification form
now appears with the current field specifications for the table to which data will be imported.
The Specs... now needs to be clicked upon which a window will open containing the names of
field specifications set by the programmer. The “Import Specifications™ file needs to be
opened, this file contains the following fields;

month, day, year, hour, minute, second, vhnum, a2, al, , a3, sn, In, val, viol, ca, cca, speed,
length, esal, todt, twt2, twtl, twt3, dtbl, wtl2, wtll, wtl3, dtl2, wt 22, wt2l, wt23, dt23,
wit32, wt3l, wt33, dit34, wt42, wt4l,wt43, dt45, wt52, wt51, wt53, dt56, wt62, wt6l, wt63,
dt67 wt72, wt71, wt73, dt78, wt82, wt81, wt83, dt89, wt92, wt91, wt93.

ca = truck class

cca = truck sub-class

Next click on O.K. icon to return to the Text Import Wizard.

4.) Now click on the Next> icon which will then show the field breaks and titles in the strings of
data being imported.

5.) Click Next> again, the Text Import Wizard form now ask’s where the data is to be stored and
gives two options of storing the data in an existing table or storing the data in a new table. If
the user wants to add more WIM data to information already existing in the “wim data” table,
then the user needs to type “wim data” in the existing table selection box. Now click the
Next> icon which will either send the user to the next step or to the final step if the data is
being imported into an already existent “wim data” table.

6.) The Import form now displays field information modification that can be made at this point.
The user should not need to modify any of the import field designations here. Now click the

Next> icon.

7.) The next form ask’s the user if a primary key should be added to the data that is being
imported. A primary key is a numbering of all the recordsets of the data being imported in

A-2

ascending order. There is no need for this, so at this point the user should select No Primary
Key and click on the Next> icon.

8.) The current form now asks for the name of the new table into which the data being imported
will be placed. The user should type “wim data” in the Import to Table box, and click on the
finish icon. There are also two import option selection boxes that appear in this form, one
that analyzes the data being imported, and another that brings up a help box once the data has
been imported. There should be no need for the user to initiate either of these two options.

A-3

Appendix B

Modification of ESAL Function

B-1

Procedure for modification of ESAL function within the ‘WIM Data’ database
for adding new truck classes and sub-classes.

X denotes truck class
xx denotes truck sub-class

Italics denotes user assigned number (class or sub-class) or that a user specified character should
be substituted.

1.) For producing an entire new function for a new vehicle class that is not already coded, a new
function must be declared by typing the following within a new procedure;

Function ESALClassX()
Or if a new sub-class is desired to be added, continue to the next step.

2.) Queries and/or tables must now be opened so that the function is able to call and send
information with these. This operation is accomplished with the following set of commands
in which a query containing the desired weight information is opened, and several tables are
opened to send information requiring storage for later use in the function. One of these tables
stores information that is used by the Class X ESAL report, and the other tables are used to
store information needed later in the function. The following is an example for a single
vehicle sub-class, multiple vehicle sub-classes follow in the same manner.

Dim dbxx As DATABASE
Dim rsxx As Recordset

Dim dbesalxx As DATABASE
Dim rsesalxx As Recordset
Dim dbave As DATABASE
Dim rsave As Recordset

Set dbxx = CurrentDb()

Set rsxx = dbxx.OpenRecordset(''Class X - xx LEGAL + HIGH")
Set dbesalxx = CurrentDb()

Set rsesalxx = dbesalxx.OpenRecordset('' Class X-xx ESAL")

Set dbave = CurrentDb()

Set rsave = dbave.OpenRecordset(''Class X ESAL Ave'")

The following step opens the design parameters table so that the function can access the
pavement design parameters of p, and SN set in the “ESAL Calculation” form.

Dim dbdp As DATABASE
Dim rsdp As Recordset

B-2

Set dbdp = CurrentDb()
Set rsdp = dbdp.OpenRecordset(''Design Parameters')

3.) Variables used in the ESAL calculation must now be dimensioned to accommodate the type
of information they will hold. The following is a dimensioning of variables for a single
vehicle sub-class, multiple vehicle sub-classes follow similarly. The programmer should use
caution in naming sub-class and counter variables at this point so as not to use identical
variable names between vehicle sub-classes.

Dim Gt, B1, B2, b, Bx11, Bx21, Bx31, Bx12, Bx22, Bx32, Bx1, Bx2, Bx3 As Currency

Dim SE, SEE, SE1, SE2, SE3, SE4, SES, DE, DEE, DE1, DE2, DE3, DE4, DES, TE,
TEE, TE1, TE2, TE3, TE4, TES, TOTALTxx As Currency

Dim Sxx, Dxx, Txx, TOTALxx As Currency

Dim TOTALxxJan, TOTALxxFeb, TOTALxxMar, TOTALxxApr, TOTALxxMay,
TOTALxxJun, TOTALxxJul, TOTALxxAug, TOTALxxSep, TOTALxxOct
TOTALxxNov, TOTALxxDec As Currency

Dim z, zJan, zFeb, zMar, zApr, zMay, zJun, zJul, zAug, zSep, zOct, zZNov, zDec
As Integer

4.) Next the variables must initially be set to zero so that any previously existing information that
these variables have been set to is eliminated. The following is an example for a 5 axle
tractor-trailer unit with a steer axle, drive tandem, and trailer tandem.

Letz=0

Let zJan =0
Let zZFeb=10
Let zMar=0
Let zZApr=20
Let zMay =0
Let zJun=0
Let zJul=0
Let zAug=10
Let zZSep=0
Let zOct=10
Let zNov=0
Let zDec=0
Let Sxx=10
Let Dxx=10
Let Txx=10

Let TOTALxx=0
Let TOTALTxx =0
Let TOTALxxJan =0
Let TOTALxxFeb =0

B-3

Let TOTALxxMar =0
Let TOTALxxApr =10
Let TOTALxxMay =0
Let TOTALxxJun =0
Let TOTALxxJul=0
Let TOTALxxAug =0
Let TOTALxxSep =0
Let TOTALxxOct=10
Let TOTALxxNov =10
Let TOTALxxDec =0

5.) ESAL equation parameters of Gt and 3 can now be calculated and set. These two variables
remain constant for all truck classes and sub-classes, therefore this calculation only needs to
be performed once.

Gt = (Log((4.2 - (rsdp![Pt])) / (4.2 - 1.5)) / (Log(10#)))
B1=10.081 * (18 + 1) ~ 3.23)

B2 = ((rsdp![SN] +1) ~ 5.19) * (1 ~ 3.23)

b=10.4+ (B1/B2)

Gt = loss of serviceability to potential loss.

B1 = Numerator of beta equation

B2 = Denominator of beta equation

b = (beta) Design influence of p versus W curve

6.) Next the ESAL calculation for the individual axle weights within the query of recordsets
containing the weight information is performed. To accomplish this, the recordsets within
the query needs to be looped upon, required information calculated for each axle group, and
then stored for later use within the function or report.

6a.) The first part of the loop code calculates the B, parameter for the individual axle groups
which changes with the different axle weights that are used in the equations. The
following example is for the same five axle setup as previously described.

Bx for steer axle

Bx11 =0.081 * ((rsxx![wtl] + 1) ~ 3.23)

Bx12 = ((rsdp![SN] + 1) ~ 5.19) * (1 ~ 3.23)

Bx1 = 0.4 + (Bx11 / Bx12)

Bx for tandems

Bx21 = 0.081 * ((rsxx![wt2] + rsxx![wt3] + 2) * 3.23)
Bx22 = ((rsdp![SN] + 1) ~ 5.19) * (2 ~ 3.23)

Bx2 = 0.4 + (Bx21 / Bx22)

Bx31 = 0.081 * ((rsxx![wt4] + rsxx![wt5] + 2) » 3.23)
Bx32 = ((rsdp![SN] + 1) ~ 5.19) * (2 ~ 3.23)

B-4

Bx3 = 0.4 + (Bx31/ Bx32)

6b.) The next step is code that calculates the ESAL’s for the individual axle groupings. This
ESAL calculation is performed by breaking the inverse logrithmic function into five
parts, followed by a summation of these five pieces. Also, a running total is performed
For use later in the function.

ESAL EQN. for steer axle

SE1=4.79 * (Log(19) / Log(10#))

SE2 =4.79 * ((Log(rsxx![wtl] + 1)) / (Log(10#)))
SE3=0

SE4 = Gt/ Bx1

SES=Gt/b

SE =SEl1 - SE2 + SE4 - SES

SEE=1/(10 * (SE))

Sxx = Sxx + SEE

ESAL for tandem sets

DE1 =4.79 * (Log(19) / Log(10#))

DE2 =4.79 * ((Log(rsxx![wt2] + rsxx![wt3] + 2)) / (Log(10#)))
DE3 =4.33 * (Log(2) / Log(10%))

DE4 = Gt/ Bx2

DES=Gt/b

DE =DE1 - DE2 + DE3 + DE4 - DES
DEE=1/(10 ~ (DE))

Dxx = Dxx + DEE

TE1 =4.79 * (Log(19) / Log(10#))

TE2 =4.79 * ((Log(rsxx![wt4] + rsxx![wt5] + 2)) / (Log(10#)))
TE3 =4.33 * (Log(2) / Log(10#))

TE4 = Gt/ Bx3

TES=Gt/b

TE =TE1 - TE2 + TE3 + TE4 - TES
TEE=1/(10 " (TE))

Txx =Txx + TEE

TOTALxx = SEE + DEE + TEE

6¢.) The next code segment prepares data that is later sent to the ‘Annual Information’
database. This segment of code breaks information into individual months.

If rsxx![month] =1 Then

zJan=zJan +1

TOTALxxJan = TOTALxxJan + TOTALxx
Elself rsxx![month] =2 Then

zFeb =zFeb + 1

B-5

TOTALxxFeb = TOTALxxFeb + TOTALxx
Elself rsxx![month] = 3 Then

zMar =zMar + 1

TOTALxxMar = TOTALxxMar + TOTALxx
Elself rsxx![month] = 4 Then

ZApr=zApr+1

TOTALxxApr = TOTALxxApr + TOTALxx
Elself rsxx![month] =5 Then

zMay = zMay + 1

TOTALxxMay = TOTALxxMay + TOTALxx
Elself rsxx![month] = 6 Then

zJun =zJun +1

TOTALxxJun = TOTALxxJun + TOTALxx
Elself rsxx![month] = 7 Then

zJul=zJul + 1

TOTALxxJul = TOTALxxJul + TOTALxx
Elself rsxx![month] = 8 Then

ZAug =zAug +1

TOTALxxAug = TOTALxxAug + TOTALxx
Elself rsxx![month] =9 Then

zSep =zSep +1

TOTALxxSep = TOTALxxSep + TOTALxx
Elself rsxx![month] = 10 Then

Z0ct =2z0ct + 1

TOTALxxOct = TOTALxxOct + TOTALxx
Elself rsxx![month] = 11 Then

zZNov=zNov +1

TOTALxxNov = TOTALxxNov + TOTALxx
Elself rsxx![month] = 12 Then

zDec =zDec + 1

TOTALxxDec = TOTALxxDec + TOTALxx
End If

TOTALTxx = TOTALTxx + TOTALxx

6d.) The next section of code sends individual axle group ESAL information for each recordset
that the loop iterates upon to the truck sub-class ESAL tables.

With rsesalxx

.AddNew

![SA xx ESAL] = SEE

![DA xx ESAL] =DEE

![TA xx ESAL] =TEE

![TOTAL ESAL xx] = TOTALxx

B-6

.UPDATE
End With

6e.) The loop execution begins and ends with the following commands. x represents a counter
that is later used in the calculation of certain information.

Placed before step 6a.
Do While Not rsxx.EOF
x=x+1

Placed after step 6e.
rsxx.MoveNext
Loop

rsxx.Close

7.) The following code sends information to the “Class X ESAL Ave.” table using information
stored in variables by the segments of code previously described. This segment of code also
calls information from the ESAL tables established earlier, and from the initial “wim data”
table. The code is setup with only one truck sub-class presented. For additional sub-classes,
segments of code lacking the “aa” addition need to be copied and parameters changed.

With rsave

AddNew

If z> 0 Then

![AveSA xx] =Sxx/z

![AveDA xx] =Dxx/z

![AveTA xx] =Txx/z
![AveTOTAL xx] = TOTALTxx/z

Else
![AveSA xx] =0
![AveDA xx] =0

![AveTA xx] =0

![AveTOTAL xx] =0

End If

If z> 0 Then

![sminxx] = DMin("'[SA xx ESAL]", "Class X-xx ESAL'"")
![smaxxx] = DMax("[SA xx ESAL]", "Class X-xx ESAL")
![dminxx] = DMin("'[DA xx ESAL]", ""Class X-xx ESAL")
![dmaxxx] = DMax("'[DA xx ESAL]", "Class X-xx ESAL')
![tminxx] = DMin("[TA xx ESAL]", '"Class X-xx ESAL")
![tmaxxx] = DMax("'[TA xx ESAL]", "Class X-xx ESAL")
![ttminxx] = DMin(""[TOTAL ESAL xx]", '"Class X-xx ESAL")

B-7

![ttmaxxx] = DMax("[TOTAL ESAL xx]", ""Class X-xx ESAL")
Else

![sminxx] =0

![smaxxx] =0

![dminxx] =0

![dmaxxx] =0

![tminxx] =0

![tmaxxx] =0

![ttminxx] =0

![ttmaxxx] =0

End If

![Count] =z + (aa) {(aa) if addition truck sub-classes exist}
![Perc] = ((z + (aa)) / (DCount('"[day]", "wim data'")))
![d1] = DFirst("'[day]", ""wim data"")

![d2] = DLast("'[day]", ""wim data")

![m1] = DFirst(''[month]", ""wim data')

![m2] = DLast("' [month]", "wim data'")

![y1] = DFirst("'[year]", "wim data')

![y2] = DLast("'[year]", "wim data'")

![Pt] = rsdp![Pt]

![SN] = rsdp![SN]

![countxx] =z

![countyy] = (aa)

.UPDATE

End With

8.) The next segment of code sends information to the ‘Annual Information’ database. As
initially done, tables need to be opened for data storage, and variables need to be
dimensioned.

Dim dbanX As DATABASE

Dim rsanX As Recordset

Set dbanX = OpenDatabase(''¢:\my documents\Annual Info.mdb'")
Set rsanX = dbanX.OpenRecordset(''Class X AE")

Dim AExxJ, AExxF, AExxMR, AExxAP, AExxMY, AExxJN, AExxJL, AExxAU,
AExxS, AExxO, AExxN, AExxD As Currency

Dim CountxxJ, CountxxF, CountxxMR, CountxxAP, CountxxMY, CountxxJN,
CountxxJL, CountxxAU, CountxxS, CountxxO, CountxxN, CountxxD
As Currency

9.) Next, values are calculated and sent to a table in the ‘Annual Information’ database for later
usage in a function located in the ‘Annual Information’ database. The example below

B-8

contains code for sending information of both single and multiple truck sub-classes using a
weighted average method to determine values.

With rsanX
.AddNew

Process copied for each month of the year using variables dimensioned above.
For a single truck sub-class;

If zJan > 0 Then

![CaXAEJan] = TOTALxxJan / zJan

![CountXJan] = zJan

Else

![CaXAEJan] =0

![CountXJan] =0

End If

For multiple truck sub-classes, dimension further variables.
Dim AWaal As Currency
Dim Countaal As Currency

If zJan > 0 Then

AExxJ = TOTALxxJan / zJan
CountxxJ = zJan

End If

If yJan > 0 Then

AEaaJ = TOTALaaJan / yJan
CountaalJ = yJan

End If

If (CountxxJ + CountaaJ) > 0 Then
![CaXAEJan]| = ((AExxJ * CountxxJ) + (AEaaJ * CountaalJ)) / (CountxxJ + CountaalJ)
![CountXJan] = CountxxJ + CountaalJ
End If

.UPDATE
End With

10.) The final step of the ESAL code is to close all of the open tables and queries that have not
been closed to this point. This is accomplished by the following commands.

rsesalxx.Close
rsesalaa.Close

rsave.Close
rsanX.Close

B-9

B-10

Appendix C

Modification of Weight Function

C-1

Procedure for modification of Weight function within the ‘WIM Data’
database for adding new truck classes and sub-classes.

X denotes truck class
xx denotes truck sub-class

Italics denotes user assigned number (class or sub-class) or that a user specified character should
be substituted.

1.) For producing a entire new function for a new truck class that is not already coded, a new
function must be declared by typing the following within a new procedure;

Function WeightClassX()
Or if a new sub-class is desired to be added, continue to the next step.

2.) Queries and/or tables must now be opened so that the function is able to call and send
information with these. This step is accomplished with the following set of
commands in which a query containing the desired weight information is opened, and a table
is opened for storage to which information will be sent for later use. This table stores
information that is used by the “Class X Weight” report. The following is an example for a
single truck sub-class. Dimensioning of the different tables used throughout the function is
performed first, the commands for opening the different tables will be presented at the
points in the code where information is needed from the tables or queries. Multiple truck
sub-classes follow in the same manner.

Dim dbclassXxx As DATABASE
Dim rsclassXxx As Recordset

Dim dblowxx As DATABASE

Dim rslowxx As Recordset

Dim dblegalhighxx As DATABASE
Dim rslegalhighxx As Recordset
Dim dbhighxx As DATABASE
Dim rshighxx As Recordset

Dim dbstat As DATABASE
Dim rsstat As Recordset

Opening record for calculated statistic storage.
Set dbstat = CurrentDb()
Set rsstat = dbstat.OpenRecordset('' Class X Weight'")

3.) The following section of code opens the “LEGAL + HIGH” query to receive data.

C-2

Two variables are declared and set to zero, which are used as a counter and running sum.

The variable z is used as a loop counter for the truck sub-class. AVEOWxx is an average
operating weight summation for the truck sub-class. AVEOW is a variable for the storage of
the singular or weighted summation of the truck sub-classes. This step is iterated for
multiple truck sub-classes.

Calculating average operating weight of all trucks accepted above a minimum weight cutoff.
Set dblegalhighxx = CurrentDb()
Set rslegalhighxx = dblegalhighxx.OpenRecordset(''Class X - xx LEGAL + HIGH")

Dim z As Integer
Dim AVEOW As Currency
Dim AVEOWxx As Currency

Letz=0
Let AVEOWxx =0

Annual operating weight information for sub-class xx.

Dim TOTALxxJan, TOTALxxFeb, TOTALxxMar, TOTALxxApr, TOTALxxMay,
TOTALxxJun, TOTALxxJul, TOTALxxAug, TOTALxxSep, TOTALxxOct,
TOTALxxNov,TOTALxxDec As Currency

Dim zJan, zFeb, zMar, zApr, zMay, zJun, zJul, zAug, zSep, zOct, zZNov, zDec As Integer

LetzJan=0

Let zZFeb =10

Let zMar =10

Let zApr=0

Let zMay =0

Let zJun=10

Let zJul =0

Let zAug=0

Let zSep =0

Let zOct=10

Let zNov =0

Let zDec =0

Let TOTALxxJan =0

Let TOTALxxFeb =0

Let TOTALxxMar =0

Let TOTALxxApr =10

Let TOTALxxMay =0

Let TOTALxxJun =0

Let TOTALxxJul =0

Let TOTALxxAug =0

Let TOTALxxSep =0

C-3

Let TOTALXxxOct=0
Let TOTALxxNov =0
Let TOTALxxDec =0

3a.) The following segment of code loops on the recordsets of the open query to prepare
information to be sent to the ‘Annual Information’ database. This code is iterated for
multiple truck sub-classes. The loop is initiated by a DO command with the proper loop
proceedings.

Do While Not rslegalhighxx.EOF
z=z+1
AVEOWxx = AVEOWxx + rslegalhighxx![twt]

If rslegalhighxx![month] = 1 Then
zJan=zJan +1
TOTALxxJan = TOTALxxJan + rslegalhighxx![twt]

Elself rslegalhighxx![month] = 2 Then

zFeb =zFeb +1

TOTALxxFeb = TOTALxxFeb + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 3 Then

zMar =zMar + 1

TOTALxxMar = TOTALxxMar + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 4 Then

ZApr=zApr+1

TOTALxxApr = TOTALxxApr + rslegalhighxx![twt]
Elself rslegalhighxx![month] =5 Then

zMay = zMay + 1

TOTALxxMay = TOTALxxMay + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 6 Then

ZJun=zJun +1

TOTALxxJun = TOTALxxJun + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 7 Then

ZJul=zJul +1

TOTALxxJul = TOTALxxJul + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 8 Then

ZAug =zAug+1

TOTALxxAug = TOTALxxAug + rslegalhighxx![twt]
Elself rslegalhighxx![month] =9 Then

zSep =zSep +1

TOTALxxSep = TOTALxxSep + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 10 Then

70ct =7z0ct + 1

TOTALxxOct = TOTALxxOct + rslegalhighxx![twt]

C-4

Elself rslegalhighxx![month] = 11 Then

zNov =zNov +1

TOTALxxNov = TOTALxxNov + rslegalhighxx![twt]
Elself rslegalhighxx![month] = 12 Then

zDec=zDec +1

TOTALxxDec = TOTALxxDec + rslegalhighxx![twt]
End If
rslegalhighxx.MoveNext
Loop

4.) The next segment of code places information in the AVEOW variable. Code is shown for
both a single truck sub-class and for multiple truck sub-classes.

Performing weight calculation for a single truck sub-class.
If x> 0 Then

AVEOW = AVEOWxx / z

Else

AVEOW =0

End If

Perform weighted average on weight for several truck sub-classes.
AVEOWaa is calculated the same way as AVEOWxx, but new truck sub-class.
Count for new sub-class = y.

Dim AVEOWx, AVEOWYy As Currency

If x> 0 Then

AVEOWx =AVEOWxx/z

Else

AVEOWx =0

End If

If y> 0 Then

AVEOWy =AVEOWaa / y

Else

AVEOWy =0

End If

If (z +y)> 0 Then

AVEOW = ((AVEOWx * 7) + (AVEOWYy * y))/ (z +y)

Else

AVEOW =0

End If

5.) The next code segment opens a query called “Class X - xx LOW? to obtain information to

perform the same type of operation described in the previous step. Variables are
set accordingly. The segment of code starts by looping upon the recordsets stored in the

C-5

opened query to perform a running total for a individual truck sub-classes (for multiple truck
sub-classes, this loop is iterated with different variables).

Calculating the average empty operating weight for class X trucks.
Set dblowxx = CurrentDb()
Set rslowxx = dblowxx.OpenRecordset(''Class X - xx LOW")

Dim AVEL As Currency
Dim AVELxx As Currency
Dim a As Integer

Leta=0

Let AVELxx =0

Do While Not rslowxx.EOF
a=a+1

AVELxx = AVELxx + rslowxx![twt]
rslowxx.MoveNext

Loop

Perform weight average on low weight.
Dim AVELa As Currency

If a> 0 Then

AVEL = AVELxx/ a

Else

AVEL =0

End If

Perform weighted average on low weight.

AVELaa is calculated the same way as AVELxx, but new truck sub-class.
Count for new sub-class = b.

Dim AVELx, AVELy As Currency

If a> 0 Then

AVELa=AVELxx/a

Else

AVELa=0

End If

If 5> 0 Then

AVELb =AVELaa /b

Else

AVELbL=0

End If

If (a + b) > 0 Then

AVEL = ((AVELxx * a) + (AVELaa * b))/ (a + b)

C-6

Else
AVEL =0
End If

6.) Next, the same procedure is followed as described in steps 3 and 4 to determine overweight
truck information.

Set dbhighxx = CurrentDb()

Set rshighxx = dbhighxx.OpenRecordset(''Class X - xx HIGH")
Set dbclassXxx = CurrentDb()

Set rsclassXxx = dbclassXxx.OpenRecordset(''Class X - xx'")

Dim d As Integer

Dim AVEOVE As Currency
Dim AVEOVExx As Currency
Dim PEROVE As Currency
Dim PEROVExx As Currency
Dim per As Currency

Dim perxx As Currency

Dim TOTAL As Currency
Dim TOTALxx As Currency

Letd=0

Let AVEOVExx =0

Do While Not rshighxx.EOF

d=d+1

AVEOVExx = AVEOVExx + rshighxx![twt]
rshighxx.MoveNext

Loop

Perform weight average on over-weight.
If d > 0 Then

AVEOVE = AVEOVExx /d

Else

AVEOVE =0

End If

Perform weighted average on weight.

AVELaa is calculated the same way as AVELxx, but new truck sub-class.
Count for new sub-class = y. '

Dim AVEOVEd, AVEOVEe As Currency

If d > 0 Then

C-7

AVEOVEd = AVEOVExx /d
Else

AVEOVEd =0

End If

If e > 0 Then

AVEOVEe = AVEOVEaa / e
Else

AVEOVEe=0

End If

If (d+ e) >0 Then

AVEOVE = ((AVEOVExx * d) + (AVEOVEaa * ¢)) / (d + e)
Else

AVEOVE =0

End If

7.) The next code segment places information into variables for sending statistical weight
information to “Class X Weight” table. Both single and multiple truck sub-class code
procedures are shown.

Ifx>00ra>00rd>0Then
rsclassXxx.MoveLast

TOTALxx = rsclassXxx.RecordCount
Else

TOTALxx =0

End If

With multiple truck sub-classes.
Ify>00rb5>00re>0Then
rsclass4daa.MoveLast

TOTALaa = rsclass4daa.RecordCount
Else

TOTALaa=0

End If

TOTAL = TOTALxx + TOTALaa

If d> 0 Then

perxx = rshighxx.RecordCount
Else

perxx =10

End If

With multiple truck sub-classes.
If e >0 Then

peraa = rshighaa.RecordCount
Else

C-8

peraa=10
End If
per = perxx + (peraa)

8.) The following code segment sends information to the “Class X Weight” table in the ‘WIM
Data’ database. The code also calls information from the “LEGAL”, “LEGAL + HIGH”,
“HIGH” queries, and from the “wim data” table.

With rsstat

.AddNew

![AveOpWeight(kips)] = AVEOW
![AveLowWeight(kips)] = AVEL

If TOTAL > 0 Then

![%Overweight] = (per / TOTAL) * 100

Else

![%Overweight] = 0

End If

![AveOverweight(kips)] = AVEOVE

Ifd> 0 Then

![MaxOverweightxx(kips)] = DMax("' [twt]", ""Class X - xx LEGAL + HIGH")
Else

![MaxOverweightxx(kips)] =0

End If

If x> 0 Then

!'[Aveweightxx] = DAvg("'[twt]", "Class X - xx LEGAL")
Else

!'[Aveweightxx] = 0

End If

![Count] = DCount(''[ca]", ""Class X"")

![Perc] = (DCount("[ca]", '""Class X"')) / (DCount("' [day]", ""wim data'")))
![CountHxx] = DCount('[twt]", ""Class X - xx HIGH")
![CountLxx] = DCount("'[twt]", ""Class X - xx LEGAL")
![d1] = DFirst("'[day]", ""wim data")

![d2] = DLast("'[day]", "wim data'")

![m1] = DFirst("'[month]", "wim data'")

![m2] = DLast("'[month]", "wim data'")

'[y1] = DFirst("'[year]", "wim data'")

![y2] = DLast("'[year]", ""wim data'")

.UPDATE

End With

9.) The next segment of code sends information to the ‘Annual Information’ database. As
initially done, a table needs to be opened for data storage, and variables need to be defined.

C-9

Dim dbanX As DATABASE
Dim rsanX As Recordset

Set dbanX = OpenDatabase(''c:\my documents\Annual Info.mdb")
Set rsanX = dbanX.OpenRecordset(''Class X AW")

Dim AWxxJ, AWxxF, AWxxMR, AWxxAP, AWxxMY, AWxxJN, AWxxJL, AWxxAU,
AWxxS, AWxx0, AWxxN, AWxxD As Currency

Dim CountxxJ, CountxxF, CountxxMR, CountxxAP, CountxxMY, CountxxJN,
CountxxJL, CountxxAU, CountxxS, CountxxO, CountxxN, CountxxD
As Currency

For multiple truck sub-classes.

Dim AWaal As Currency

Dim Countaal As Currency

10.) Next, values are calculated and sent to a table in the ‘Annual Information’ database for later
usage in a function located in the ‘Annual Information’ database. The example below
contains procedures for sending information of both a single truck sub-class, and multiple
truck sub-classes using a weighted average to determine values.

With rsanX
.AddNew

Process copied for each month of the year using the variable dimensions above.
For single truck sub-class.

If xJan > 0 Then

![CaXAWJan] = TOTALxxJan / zJan

![CountXJan] = zJan

Else

![CaXAWJan] =0

![CountXJan] =0

End If

For multiple truck sub-classes.

If zJan > 0 Then

AwxxJ = TOTALxxJan / zJan
CountxxJ = zJan

End If

If yJan > 0 Then

AwaaJ = TOTALaaJan / yJan
CountaaJ = yJan

End If

If (CountxxJ + CountaaJ) > 0 Then

C-10

![CaXAWJan] = (AWxxJ * CountxxJ) + (AWaaJ * Countaal)) / (CountxxJ +

Countaal)
![CountXJan] = CountxxJ + Countaal
End If
.UPDATE
End With

11.) The final step of the Weight code is to close all of the open tables and queries that have not
been closed to this point. This is accomplished by the following command.

rsanX.Close

C-11

	

